Förster resonance energy transfer between individual semiconductor nanocrystals and an InP film
نویسندگان
چکیده
The modification of the radiative decay of a single emitter in close vicinity to a dielectric interface is investigated by studying the photoluminescence (PL) decay dynamics of colloidal semiconductor nanocrystals (NCs) deposited on semiconductor surfaces. The PL decay lifetimes of single CdSe/CdS NCs spin-coated on InP surfaces passivated with thin oxide layers are measured. Electrochemical passivation of the InP surfaces with oxide layers of different thicknesses enables to study the influence of the distance between the semiconductor surface and the NC on the lifetime. A shortening of the PL decay lifetimes of the NCs with respect to their lifetimes on glass strongly suggests the opening of recombination channels for the photogenerated exciton, which we attribute to energy transfer between the NC and the semiconductor. We also experimentally show the influence of the orientation of the NC with respect to the semiconductor surface on the coupling. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JNP.10.046014]
منابع مشابه
Förster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum dots for solid state lighting
In this paper, we present Förster resonance energy transfer FRET -enhanced color-conversion using colloidal semiconductor quantum dot nanocrystals NCs to make reddish-orange light-emitting diodes for use in ultraefficient solid state lighting. To achieve FRET enhancement at 614 nm, we use an energy gradient hybrid structure made of cyanand orange-emitting CdSe/ZnS NCs PL=492 and 588 nm in solut...
متن کاملEfficient radiative and nonradiative energy transfer from proximal CdSe/ZnS nanocrystals into silicon nanomembranes.
We demonstrate efficient excitonic sensitization of crystalline Si nanomembranes via combined effects of radiative (RET) and nonradiative (NRET) energy transfer from a proximal monolayer of colloidal semiconductor nanocrystals. Ultrathin, 25-300 nm Si films are prepared on top of insulating SiO(2) substrates and grafted with a monolayer of CdSe/ZnS nanocrystals via carboxy-alkyl chain linkers. ...
متن کاملComplete Quenching of CdSe Nanocrystal Photoluminescence by Single Dye Molecules
Much of the current research into semiconductor nanocrystal (NC) photochemistry has focused on their potential application as biological reporters, as light harvesting elements in solar energy conversion systems, or as tunable emitters in light-emitting diodes (LEDs). These applications all necessitate energy or charge-carrier transfer between semiconductor materials and molecular species. For ...
متن کاملCombined Bimolecular Fluorescence Complementation (BiFC) and Förster Resonance Energy Transfer (FRET) Reveals Ternary SNARE Complex Formation in Living Plant Cells
متن کامل
Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source.
Local fluorescence probes based on CdSe semiconductor nanocrystals were prepared and tested by recording scanning near-field optical microscopy (SNOM) images of calibration samples and fluorescence resonance energy transfer SNOM (FRET SNOM) images of acceptor dye molecules inhomogeneously deposited onto a glass substrate. Thousands of nanocrystals contribute to the signal when this probe is use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018